Endomorphisms of Banach algebras of infinitely differentiable functions on compact plane sets

نویسنده

  • Joel F. Feinstein
چکیده

This note is a sequel to [7] where we investigated the endomorphisms of a certain class of Banach algebras of infinitely differentiable functions on the unit interval. Start with a perfect, compact plane setX. We say that a complex-valued function f defined on X is complex-differentiable at a point a ∈ X if the limit f (a) = lim z→a, z∈X f(z)− f(a) z − a exists. We call f ′(a) the complex derivative of f at a. Using this concept of derivative, we define the terms complex–differentiable on X, continuously complex–differentiable on X, and infinitely complex–differentiable on X in the obvious way. We denote the n-th complex derivative of f at a by f (n)(a), and we denote the set of infinitely differentiable functions on X by D∞(X).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Certain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces

We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...

متن کامل

Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions

We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact  (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...

متن کامل

Compact endomorphisms of Banach algebras of infinitely differentiable functions

Let (Mn) be a sequence of positive numbers satisfying M0 = 1 and Mn+m MnMm ≥ ( n+m n ) , m, n, non-negative integers. We let D([0, 1],M) = {f ∈ C∞([0, 1]) : ‖f‖ = ∞ ∑

متن کامل

Completions of normed algebras of differentiable functions

In this paper we look at normed spaces of differentiable functions on compact plane sets, including the spaces of infinitely differentiable functions considered by Dales and Davie in [7]. For many compact plane sets the classical definitions give rise to incomplete spaces. We introduce an alternative definition of differentiability which allows us to describe the completions of these spaces. We...

متن کامل

On the maximal ideal space of extended polynomial and rational uniform algebras

Let K and X be compact plane sets such that K X. Let P(K)be the uniform closure of polynomials on K. Let R(K) be the closure of rationalfunctions K with poles o K. Dene P(X;K) and R(X;K) to be the uniformalgebras of functions in C(X) whose restriction to K belongs to P(K) and R(K),respectively. Let CZ(X;K) be the Banach algebra of functions f in C(X) suchthat fjK = 0. In this paper, we show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998